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EFFECT OF PRESSURE ENVIRONMENT ON THE
DAMPING OF VIBRATING STRUCTURES
By David G. Stephens* and Maurice A. Scavullo®
NASA Langley Research Center

ABSTRACT

29495

An investigation was conducted to determine the mechanism of the air
damping exhibited by rigid bodies of different shapes oscillating in a pressure
environment. Circular and rectangular panels, as well as a sphere and cylinder,
were attached to cantilever springs and the free decay of an induced oscilla-
tion measured at pressure levels from atmospheric to 4 X 10~2 torr. Data é;;
presented to show the effect of pressure, vibratory amplitude, shape, and sur-
face area on the air damping of the models. Results indicate that the magnitude
of the air damping may greatly exceed the structural damping of the system. The
air damping associated with the panels is directly proportional to the pressure
and amplitude which is indicative of dissipative loads proportional to the
dynamic pressure. Furthermore, the panel damping was found to be independent
of shape, and a nonlinear function of the surface area. The sphere and cylinder
exhibit viscous damping characteristics which are in good agreement with avail-

able theory. N
INTRODUCTION

The vibratory response of a mechanical system is greatly influenced by the
presence of damping. In most situations this damping results from the dissipa-
tion of energy in such forms as internal hysteresis, interface or joint fric-

tion, and external or air damping. This latter form of damping is highly"®
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dependent upon the magnitude of the pressure environment and, therefore,
deserves particular attention in studying the response of systems designed to
operate throughout a wide range of pressure. If, for example, the vibration
tests of a space vehicle are conducted under atmospheric pressure conditions,
the damping level and consequently the response will be somewhat different than
in the actual operating environment which involves reduced pressures. Thus in
Interpreting and extrapolating the results of such tests, one must understand
and treat the effect of the pressure environment on the results.

The purpose of this paper is to preseht the results of an examination of
the nature and magnitude of the air damping exhibited by rigid two- and three-
dimensional shapes oscillating in a variable pressure environment. Circular
and rectangular panels, and a sphere and cylinder were attached to cantilever
springs and the free decay of an induced oscillation was studied at pressure
levels from atmospheric to 4 x 10=2 torr. Data are presented to show the effect
of pressure, vibratory amplitude, shape, and surface area on the air damping of

the models.
APPARATUS AND PROCEDURE

Apparatus
The test program and subsequent data reduction were directed toward the
isolation and examination of the effects of pressure, amplitude, shape, and
area on the air damping of common shapes oscillating in a direction perpendicu-
lar to their principal surface. A study of the free decay characteristics was
deemed most expedient for examining the effects of these variables independently
as well as in combination. The models used in the majority of the tests are

shown in figure 1. The disks and rectangular panels with surface areas of 15,




30, and 45 square inches as well as the sphere and cylinder having projected
areas of 30 square inches were subjected to vibration at various pressure levels
and amplitudes within a bell jar vacuum system.

The oscillation was provided by the cantilever spring system shown in fig-
ure 2. The beam, machined from a single piece of stainless steel, had a rela-
tively large foot for mounting to a rigid base plate and a T-section at the tip
for attaching the models. In all cases a frequency of 3.8 cps was maintained by
adding small tuning masses to the T-section. The excitation was provided by the
spring-loaded solenoid. When energized, the slug imparted a static deflection
to the beam and upon removal of the current the slug was retracted by the
spring. The ensuling oscillation was sensed by means of a strain gage attached
to the root of the beam. The system as shown was enclosed by a bell jar capable
of maintaining pressure levels between atmospheric and 4 X 1072 torr. Addi-
tional tests were conducted at atmospheric pressure to better define the depend-
ency of damping on panel area. Nine rectangular panels having surface areas
ranging from 12 to 39 square inches were studied using the beam system described
above and, in addition, three larger panels having areas of 71.%, 128, and
220 square inches were studied using a larger beam also having a tuned frequency

of 3.8 cps.

Procedure
The damping characteristics of the beam alone, tuned to 3.8 cps, were
studied initially followed by an examination of the damping of the beam-model
system. The procedure was essentially the same in each case. The chamber, when
used, was pumped down to the desired pressure level, and for all but the lowest
pressure (4 x 1072 torr), the pump was shut down while the test points were

taken. The beam was then deflected, released, and damping of the oscillation



measured at various positions along the envelope. The damping was measured by

an electronic dampometer and specified in terms of the logarithmic decrement,

=1 el
® = = log (1)

PRESENTATION AND DISCUSSION OF RESULTS

General
For purposes of this investigation, the logarithmic decrement is physically

interpreted as the ratio of the energy lost per cycle to twice the total energy,

as discussed in reference 1. For the system under study, the measured decre-
ments include losses due to the beam (hysteresis, joint friction, air damping,
etc.) as well as the air damping of the model or

5=AE&J2'EAEb=aa+6b (3)

The sir damping attributed to the attached model ©&a is obtalned by subtracting
the beam damping ggg, measured in a separate test under identical conditions,
from the total measured decrement. These decrements are presented in terms of
the variables of interest.

In examining the results, the nature of the resistive or damping forces
may be inferred by comparing the measured decrements to those calculated for a
single-degree-of-freedom system subjected to known losdings. If, for example,
the forces are directly proportional to the velocity (often referred to as

viscous) the energy loss per cycle AE would equal the work done by the dissi-

pative force, or

"




AE=fde=fc§cdx (4)
(& C

where the velocity is very nearly

X = X cos wt (5)

if the system is lightly damped. Integrating equation (4) and dividing the

result by twice the maximum energy of the cycle, or

2E = Mxo2m2 (6)
yields a decrement
AE
8 = 5 %% (7N

Thus in the case of viscous damping the decrement is independent of the ampli-
tude and inversely proportional to the frequency.
Likewise a panel subjected to forces proportional to velocity squared will

have a decrement of the form

8 “¥o
5 =2 2 8
3 M (8)
which is a linear function of amplitude and independent of frequency. These

two types of damping forces, viscous and velocity squared, are of particular

interest because of their common occurrence in steady-state aerodynamics.

Beam Damping
The damping associated with the fundamental mode of oscillation of the
cantilever beam, tuned to 3.8 cps, is presented in figure 3. These data served
as & tare for obtalning the air damping from the measured total demping values.

The damping factors, in terms of the logarithmic decrement &, are shown as a



function of the pressure for several different tip amplitudes. The tip ampli-
tudes shown are the average tip displacement during the damping measurement.
In this case, as well as those to follow, the data points represent an average
of five or more measured values. The total damping associated with the beam
exhibits a near linear dependency on pressure in the range between atmospheric
pressure and 100 torr. Below 100 torr the damping factors deviate from this
linear pressure relationship and approach values at 4 X 10-2 torr which are

most probably due to the internal hysteresis and joint friction.

Total Damping of Beam-Model System

A typical sample of the data, as recorded, is shown in figure 4 to illus-
trate the magnitude of the beam damping relative to the total damping. The
total damping recorded for the 30-square-inch rectangle mounted on the tip of
the beam is presented as a function of pressure and amplitude. The amplitudes
refer to the deflection of the center of the panel during the damping measure-
ment and correspond to the beam tip deflections shown in figure 3. It is
interesting to note the significant increase in the system damping with the
addition of the panel. For example, an increase in damping by a factor of
approximately five is noted in the high-pressure region. As the pressure is
decreased, the values of damping converge to the values measured for the beam
alone in the low-pressure region. This indicates that no extraneous damp?ng is
introduced into the system with the addition of the panel and thus the addi-

tional damping may be attributed to the air resistance.

Damping of Two-Dimensional Models

Effect of pressure.- The dependency of the air damping on the pressure

environment is presented in figure 5. The air damping, obtained by subtracting




the beam dsmping from the total damping at corresponding pressures and ampli-
tudes, is shown for the 30-square-inch rectangle. The damping factor exhibits
a linear dependency on the pressure, and thus density, throughout the range
examined. A strong dependency of the damping on the amplitude is also noted,
indicating the presence of a nonlinear damping phenomena. Identical trends
were noted in the other panels of 15, 30, and 45 square inches and thus these
data will be presented in a subsequent section on area and shape.

Effect of emplitude.- The variation of damping with amplitude for the

30-square-inch rectangle is presented in figure 6. The trends existing in this
case are again representative of the results obtained for the other two-
dimensional models. For the range of amplitude examined, the damping is a

near linear function of panel deflection. Because of this linear dependency,
the damping is apparently of the velocity squared type as previously discussed.
Thus the resistance force is proportional to the dynamic pressure pU2 as
would be found in the case of a panel immersed in a steady stream of incom-
pressible fluid. It should be noted that an extension of the faired lines will
not intersect the'srigin. It is probable that in the amplitude range below
0.1 inch the forces become more viscous in nature and therefore the amplitude

dependency or slope of the curve is reduced.

Effect of shape.- The effects of panel shape were examined by comparing

the damping factors associated with the rectangles and disks of 15, 30, and

45 square inches. In figure T the decrements, measured over a wide range of
pressure and amplitude, are presented as a function of the parameter ox/M
where p 1is the density of the air within the chamber, x is the amplitude of
the panel, and M 1is the effective mass of the system located at the center of

the panel. The symbols indicate the pressure levels at which the measurements



were taken. The decrement is a linear function of the parameter px/M which
is indicative of velocity squared damping (eq. 8). For a particular area,

5 = Eﬁi where k is the slope of the curve associated with each configuration.
In comparing the results of the disk and rectangle, the slopes of the curve k

are seen to be independent of shape.

Effect of area.- As shown in figure T, the damping increases with panel

area but at a much greater rate than one to one. To examine the damping-area
relationship in de@ail, 9 rectangular panels having surface areas ranging from
12 to 39 square inches were attached to the beam and studied at atmospheric
pressure. In addition, three panels having surface areas of Tl.3, 128, and
220 square inches were studied using a larger beam to further extend the range
of area. The results of this study are summarized in figure 8 where the param-

eter %§R=k) is shown for each area. The data of figure 7 are indicated by

the squared symbols. Results indicate that ©d = 2285%;Z2; the exponent h/i
being determined from the slope of the curve. It appears that within the range
of variables covered in these tests, the above relationship can be used for
obtaining the variation of air damping with changes in enviro;ment.

Limited tests were also conducted within the vacuum system using a beam

having a tuned frequency of 21.2 cps and panels with surface areas ranging from

12 to 45 square inches. Results of these tests verify the functional relation-

_ Koxa*/3
M

above 0.1 inch, a constant of proportionality K of 22 appears adequate for

ship observed in the low-frequency case, i.e., . For amplitudes

predicting the damping. Below 0.1 inch, the damping ceases to be a linear
function of amplitude as was the case for the low-frequency data and cannot
be adequately represented by the suggested empirical relationship. It may

also be noted that the damping values at these low amplitudes are substantially

8




smaller than those associated with the structural damping and it becomes
increasingly difficult to accurately ascertain the true contributions of the

surrounding air to the overall damping of the system.

Damping of Three-Dimensional Models
Sphere.- The problem of sphere performing pendulum oscillations of small
amplitude in an incompressible viscous fluid has been examined theoretically
by Lamb, reference 2. The derivation of the resultant force acting on the
spherical surface yields a force component which is linearly proportional to

and in opposition to the velocity as follows

X = 31rpa3w<-l— + —l—>U (9)

Ba = p2a2
where
X force in opposition to velocity
o) mass density of fluid
a radius of sphere
W circular frequency of oscillations

B = (w/2v)*/2
v kinematic viscosity
U velocity

When substituted into equation (7),
5=£=L@ (10)

the resulting decrement is

_ 3m2pal(1 1
° =T (‘5 * Beae> (1)



The validity of this relationship is shown in figure 9 where the damping of the
sphere, measured at several amplitudes, is presented as a function of pressure.
The data are independent of amplitude, proportional to the square root of the
density and are in good agreement with the theoretical curve.

Cylinder.- A similar theoretical treatment for a cylinder is presented in
reference 3. The viscous damping force for a cylinder of high length to radius

vibrating normal to its length is

- 2 1
X = na plw(ﬁa + 13232>U (12)

wvhere a and 1 are the radius and length of the cylinder, respectively, and

the other symbols are as previously defined. The resulting decrement for the

_Trgaapl 2 1 1
5 = —M—<Bj;+ -55;2- ( 3)

The theoretical results are shown in figure 10 along with the data measured for

cylinder is

the cylinder. In the region of low amplitude, the theory is in excellent agree-
ment with the experimental results. At higher amplitudes, however, the decre-

ment appears somewhat high possibly due to end effects or flow separation.
CONCLUSIONS

Within the range of variables considered in this investigation the fol-
lowing conclusions are noted:

(1) For systems having a relatively large area to mass ratio, the magnitude
of the alr damping may greatly exceed the damping attributed to all other
sources. Values of air damping, an order of magnitude greater than the struc-

tural damping, were observed during these tests.
10




(2) The demping factors associated with vibrating panels exhibit a near
linear dependency on pressure and vibratory amplitude, which indicates the
presence of velocity squared damping or more specifically damping forces pro-
portional to the dynamic pressure.

(3) The damping factors associated with panels were found to be independent

of shape and proportional to the product of the density, amplitude, and area

_ prAh/B
=

(%) The demping factors associated with the sphere are essentially propor-

raised to the 4/3 power, divided by the vibratory mass, i.e., &

tional to the square root of the density, independent of vibratory amplitude,
and in good agreement with available theory based on viscous damping forces.
(5) At low amplitude the cylinder exhibits damping factors in excellent
agreement with those predicted by viscous theory. At higher amplitudes the
damping exceeds theoretical predictions - possibly due to end effects or flow

separation.
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